Physiotherapy and Sports Injury Consultation

Physiotherapy and Sports Injury Consultation

sports injury Nearly two million people every year suffer sports-related injuries and receive treatment in emergency departments. Fatigue is a large contributing factor that results in many sports injuries. There are times where an athlete may participate on low energy leading to the deterioration in technique or form, resulting in slower reaction time, loss in stability of muscle joints, and allowing an injury to occur. For both sexes, the most common areas injured are the knee and ankle, with sprains/strains being the most common areas for injury. Injuries involving the patellofemoral articulation are significantly more frequent among females. The sport with the highest injury rate is football, with greater than 12 times the number of injuries seen in the next most common sport.

Soft tissue injuries

When soft tissue experiences trauma the dead and damaged cells release chemicals, which initiate an inflammatory response. The small blood vessels that are damaged become dilated which produce bleeding within the tissue. The body's normal response includes forming a small blood clot in order to stop the bleeding and allows a lot of special cells, called fibroblasts, to form. This begins the healing process by laying down scar tissue. Therefore, the inflammatory stage is the first phase of healing. However, too much of an inflammatory response in the early stage can indicate that the healing process takes longer and a return to activity is delayed. Sports injury treatments are intended to minimize the inflammatory phase of an injury so that the overall healing process is accelerated. Intrinsic and extrinsic factors are determinant for the healing process.

Soft tissue injuries can be generally grouped into three categories: contusions, abrasions, and lacerations. Contusions or bruises are the simplest and most common soft tissue injury and are usually a result of blunt force trauma. Severe contusions may involve deeper structures and can include nerve or vascular injury. Abrasions are superficial injuries to the skin no deeper than the epidermis tissue layer and bleeding, if present, is minimal. Minor abrasions generally do not scar, but deeper abrasions generally bleed and may scar. Lastly, sports-related lacerations are caused by blunt trauma and result in burst-type open wounds, often with jagged irregular edges. Facial lacerations are the most variable of the soft tissue injuries that athletes can sustain. They can occur intraorally and extraorally, vary from a superficial skin nick to a through and through lip laceration, or involve significant vascular disruption or injury to collateral vital structures.

Hard tissue injuries

Types of hard tissue injuries can include dental and bone injuries and are less frequent than soft tissue injuries in sport, but are often more serious. Hard tissue injuries to teeth and bones can occur with contusions, such as Battle sign, which indicates basilar skull fracture, and so-called raccoon eyes, which indicate mid-face fractures. However, tooth fractures are the most common type of tooth injury and can be categorized as crown infractions, enamel-only fracture, enamel-dentin fractures, and fractures that extend through the enamel and dentin into the pulp which are defined below.

Crown infractions are characterized by a disruption of the enamel prisms from a traumatic force, these injuries typically present as small cracks that affect only the enamel. Enamel-only fractures are mild and often appear as roughness along the edge of the tooth crown. These injuries typically can go unnoticed by the athlete as they are usually not sensitive to the touch or to temperature changes. Enamel-only fractures are not considered dental emergencies and immediate care are not needed. Enamel-Dentin crown fractures typically present as a tooth fracture confined to enamel and dentin with loss of tooth structure, but not exposing the pulp. The athlete often will report sensitivity to air, cold or touch, but the athlete can return to play as tolerated and referral can be delayed up to 24 hours.

Enamel-Dentin-Pulp fractures extend through the enamel and dentin and into the pulp. If the pulp is vital, a focal spot of hemorrhage will be noticeable within the yellow dentin layer and the athlete may report acute pain. Referral to a trauma-ready dentist should occur as soon as possible.

In addition to tooth fractures, there are several types of bone fractures as well. These types being closed or simple, open or compound, greenstick, hairline, complicated, comminuted, avulsion, and compression. A complicated fracture is when the structures surrounding the fracture are injured, such as blood vessels, organs, nerves, etc.

Overuse injuries

Overuse injuries can be defined as injuries that result from a mechanism of repetitive and cumulative micro-trauma, without a specific onset incident. Rapid changes in physical growth can make children vulnerable to overuse injuries, and these types of injuries are increasing among youth populations. Predictive Indicators of Overuse Injuries in Adolescent Endurance Athletes, runners seem to account for the majority of injuries (up to 80 percent) with the majority of these injuries (more than two-thirds), occurring in the lower extremity and being of an overuse nature. Although incidence rates in senior athletics have been reported as 3.9 injuries/1000 hours of practice, specific injury incidence in youth track and field varies among disciplines; whereas an overall incidence of 0.89 injuries/1000 hours has been reported for high school track and field athletes. In addition, long-distance runners have shown 19 times higher incidence (17 injuries/1000 hours) than other disciplines.

Head and neck injuries

Head and neck injuries can include a variety of pathologies from sprHead and neck injuries can include a variety of pathologies from sprains, strains, and fractures to traumatic brain injuries and spinal cord injuries. Sprains and strains can occur from an abrupt rotation or whipping motion, such as whiplash. Stress injuries (stress fractures and stress reactions) of the lumbosacral region are one of the causes of sports-related lower back pain in young individuals. The onset of the observed cervical fractures in sports injury was likely due to continued momentum that transferred loads superiorly through the neck, which likely exacerbated the injuries to the occipital condyles and the upper cervical vertebrae. Researchers have reported that 3-25% of cervical spine injuries actually occur after the initial traumatic event and are caused or exacerbated by improper handling during the early stages of management or patient transport. One of the more common head or neck injuries that occur in sports is a concussion. A concussion is a type of mild traumatic brain injury resulting in a chemical change in the brain and has the potential to cause damage to brain tissue. This can occur when a person sustains a hit or blow that cause the head and brain to move quickly, causing the brain to bounce in the skull. According to an epidemiological study published in the Journal of Athletic Training, the incidence of concussions from 27 high school sports was 3.89 sports-related concussions per 10,000 athlete exposures.

SPORTS CONDITIONS

Tennis Elbow
Acl Tear
Meniscal Tear
Sprain and Strains
Hand Injuries
Rotator Cuff Tear
Dislocations
Fractures

PHYSIOTHERAPY CONDITIONS

Osteoporosis
Arthritis
Sciatica
Low Back Ache
Disc Bluge
storke
CP
Parkinson's
GBS
Club Foot